List of publications using Argo data for which at least one author is affiliated to a French research laboratory:

  1. Abot, L., C. Provost, and L. Poli (2023), Recent Convection Decline in the Greenland Sea: Insights From the Mercator Ocean System Over 2008–2020, Journal of Geophysical Research: Oceans, 128(6), e2022JC019320, doi: https://doi.org/10.1029/2022JC019320.
  2. Aguedjou, H. M. A., A. Chaigneau, I. Dadou, Y. Morel, E. Baloïtcha, and C. Y. Da-Allada (2023), Imprint of Mesoscale Eddies on Air-Sea Interaction in the Tropical Atlantic Ocean, Remote Sensing, 15(12), doi: https://doi.org/10.3390/rs15123087.
  3. Akhil, V. P., M. Lengaigne, K. S. Krishnamohan, M. G. Keerthi, and J. Vialard (2023), Southeastern Arabian Sea Salinity variability: mechanisms and influence on surface temperature, Climate Dynamics, 61, 3737-3754, doi: https://doi.org/10.1007/s00382-023-06765-z.
  4. Allende, S., T. Fichefet, H. Goosse, and A. M. Treguier (2023), On the ability of OMIP models to simulate the ocean mixed layer depth and its seasonal cycle in the Arctic Ocean, Ocean Model., 184, 102226, doi: https://doi.org/10.1016/j.ocemod2023.102226.
  5. Almeida, L., N. Kolodziejczyk, and C. Lique (2023), Large Scale Salinity Anomaly Has Triggered the Recent Decline of Winter Convection in the Greenland Sea, Geophys. Res. Lett., 50(21), e2023GL104766, doi: https://doi.org/10.1029/2023GL104766.
  6. Arellano, C., V. Echevin, L. Merma-Mora, A. Chamorro, D. Gutiérrez, A. Aguirre-Velarde, J. Tam, and F. Colas (2023), Circulation and stratification drivers during the summer season in the upwelling bay of Paracas (Peru): A modelling study, Cont. Shelf Res., 254, 104923, doi: https://doi.org/10.1016/j.csr.2022.104923.
  7. Azarian, C., L. Bopp, A. Pietri, J.-B. Sallée, and F. d’Ovidio (2023), Current and projected patterns of warming and marine heatwaves in the Southern Indian Ocean, Prog. Oceanogr., 215, 103036, doi: https://doi.org/10.1016/j.pocean.2023.103036.
  8. Barboni, A., S. Coadou-Chaventon, A. Stegner, B. Le Vu, and F. Dumas (2023), How subsurface and double-core anticyclones intensify the winter mixed-layer deepening in the Mediterranean Sea, Ocean Sci., 19(2), 229-250, doi: https://doi.org/10.5194/os-19-229-2023.
  9. Barnoud, A., J. Pfeffer, A. Cazenave, R. Fraudeau, V. Rousseau, and M. Ablain (2023), Revisiting the global mean ocean mass budget over 2005–2020, Ocean Sci., 19(2), 321-334, doi: https://doi.org/10.5194/os-19-321-2023.
  10. Berthet, S., Jouanno, J., Séférian, R., Gehlen, M., and Llovel (2023), W.: How does the phytoplankton–light feedback affect the marine N2O inventory?, Earth Syst. Dynam., 14, 399–412, doi: https://doi.org/10.5194/esd-14-399-2023.
  11. Boutin, J., J.L. Vergely, F. Bonjean, X. Perrot, Y. Zhou, E. Dinnat, R. Lang, D. Levine, and R. Sabia, (2023) New Seawater Dielectric Constant Parametrization and Application to SMOS Retrieved Salinity, IEEE Transactions of Geoscience and Remote Sensing, 2023, doi: 10.1109/TGRS.2023.3257923.
  12. Boyd, P. W., H. Claustre, L. Legendre, J.-P. Gattuso, and P. Y. Le Traon (2023), Operational Monitoring of Open-Ocean Carbon Dioxide Removal Deployments: Detection, Attribution, and Determination of Side Effects, Oceanography, 36(1), 2-10, doi: https://doi.org/10.5670/oceanog.2023.s1.2.
  13. Boyer, T., et al. (2023), Effects of the Pandemic on Observing the Global Ocean, Bull. Amer. Meteorol. Soc., 104(2), E389-E410, doi: https://doi.org/10.1175/BAMS-D-21-0210.1.
  14. Cimoli, L., et al. (2023), Significance of Diapycnal Mixing Within the Atlantic Meridional Overturning Circulation, AGU Advances, 4(2), e2022AV000800, doi: https://doi.org/10.1029/2022AV000800.
  15. Dall’Olmo, G., et al. (2023), Real-time quality control of optical backscattering data from Biogeochemical-Argo floats [version 2; peer review: 4 approved], Open Research Europe, 2(118), doi: https://doi.org/10.12688/openreseurope.15047.1.
  16. Gasparin, F., J.-M. Lellouche, S. E. Cravatte, G. Ruggiero, B. Rohith, P. Y. Le Traon, and E. Rémy (2023), On the control of spatial and temporal oceanic scales by existing and future observing systems: An observing system simulation experiment approach, Frontiers in Marine Science, 10, doi: https://doi.org/10.3389/fmars.2023.1021650.
  17. Germineaud, C., D. L. Volkov, S. Cravatte, and W. Llovel (2023), Forcing Mechanisms of the Interannual Sea Level Variability in the Midlatitude South Pacific during 2004–2020, Remote Sensing, 15(2), doi: https://doi.org/10.3390/rs15020352.
  18. González-Santana, A., M. Oosterbaan, T. Clavelle, G. Maze, G. Notarstefano, N. Poffa, and P. Vélez-Belchí (2023), Analysis of the global shipping traffic for the feasibility of a structural recovery program of Argo floats, Frontiers in Marine Science, 10, doi: https://doi.org/10.3389/fmars.2023.1161580.
  19. Grégoire, M., et al. (2023), Monitoring Black Sea environmental changes from space: New products for altimetry, ocean colour and salinity. Potentialities and requirements for a dedicated in-situ observing system, Frontiers in Marine Science, 9, doi: https://doi.org/10.3389/fmars.2022.998970.
  20. Grodsky, S. A., N. Reul, and D. Vandemark (2023), Sea surface salinity response to variations in the Aleutian Low, J. Mar. Syst., 240, 103888, doi: https://doi.org/10.1016/j.jmarsys.2023.103888.
  21. Gülk, B., F. Roquet, A. C. Naveira Garabato, A. Narayanan, C. Rousset, and G. Madec (2023), Variability and Remote Controls of the Warm-Water Halo and Taylor Cap at Maud Rise, Journal of Geophysical Research: Oceans, 128(7), e2022JC019517, doi: https://doi.org/10.1029/2022JC019517.
  22. Habib, J., et al. (2023), Seasonal and interannual variability of the pelagic ecosystem and of the organic carbon budget in the Rhodes Gyre (eastern Mediterranean): influence of winter mixing, Biogeosciences, 20(15), 3203-3228, doi: https://doi.org/10.5194/bg-20-3203-2023.
  23. Himmich, K., M. Vancoppenolle, G. Madec, J.-B. Sallée, P. R. Holland, and M. Lebrun (2023), Drivers of Antarctic sea ice advance, Nature Communications, 14(1), 6219, doi: https://doi.org/10.1038/s41467-023-41962-8.
  24. Hochet, A., Llovel, W., Sévellec, F., & Huck, T. (2023). Sources and sinks of interannual steric sea level variability. Journal of Geophysical Research: Oceans, 128, e2022JC019335, doi: https://doi.org/10.1029/2022JC019335.
  25. Lacour, L., Llort, J., Briggs, N. J. Llort, N. Briggs, P. G. Strutton and P. W. Boyd (2023). Seasonality of downward carbon export in the Pacific Southern Ocean revealed by multi-year robotic observations. Nat Commun, doi: https://doi.org/10.1038/s41467-023-36954-7.
  26. Lévy, M., D. Couespel, C. Haëck, M. G. Keerthi, I. Mangolte, and C. J. Prend (2023), The Impact of Fine-Scale Currents on Biogeochemical Cycles in a Changing Ocean, Annual Review of Marine Science, doi: https://doi.org/10.1146/annurev-marine-020723-020531.
  27. L’Hegaret, P., et al. (2023), Ocean cross-validated observations from R/Vs L’Atalante, Maria S. Merian, and Meteor and related platforms as part of the EUREC4A-OA/ATOMIC campaign, Earth Syst. Sci. Data, 15(4), 1801-1830, doi: https://doi.org/10.5194/essd-15-1801-2023.
  28. Llovel, W., K. Balem, S. Tajouri, and A. Hochet (2023), Cause of Substantial Global Mean Sea Level Rise Over 2014–2016, Geophys. Res. Lett., 50(19), e2023GL104709, doi: https://doi.org/10.1029/2023GL104709.
  29. Lombard, F., et al. (2023), Open science resources from the Tara Pacific expedition across coral reef and surface ocean ecosystems, Scientific Data, 10(1), 324, doi: https://doi.org/10.1038/s41597-022-01757-w.
  30. McCarthy, G. D., S. Plecha, G. Charria, A. Simon, C. Poppeschi, and A. Russo (2023), The marine heatwave west of Ireland in June 2023, Weather, 78(11), 321-323, doi: https://doi.org/10.1002/wea.4498.
  31. Meyssignac, B., et al. (2023), How accurate is accurate enough for measuring sea-level rise and variability, Nature Climate Change, 13(8), 796-803, doi: https://doi.org/10.1038/s41558-023-01735-z.
  32. Meyssignac, B., J. Chenal, N. Loeb, R. Guillaume-Castel, and A. Ribes (2023), Time-variations of the climate feedback parameter λ are associated with the Pacific Decadal Oscillation, Communications Earth & Environment, 4(1), 241, doi: https://doi.org/10.1038/s43247-023-00887-2.
  33. Mignot, A., et al. (2023), Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design, Biogeosciences, 20(7), 1405-1422, doi: https://doi.org/10.5194/bg-20-1405-2023.
  34. Minière, A., K. von Schuckmann, J.-B. Sallée, and L. Vogt (2023), Robust acceleration of Earth system heating observed over the past six decades, Scientific Reports, 13(1), 22975, doi: https://doi.org/10.1038/s41598-023-49353-1.
  35. Montero, M., N. Reul, C. de Boyer Montégut, J. Vialard, S. Brachet, S. Guimbard, D. Vandemark, and J. Tournadre (2023), Sea Surface Salinity estimates from AMSR-E Radiometer in the Bay of Bengal: Algorithm Principles and Limits. IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-21, Art no. 4206921, doi: https://doi.org/10.1109/TGRS.2023.3305203.
  36. Morrow, R., L.-L. Fu, M.-H. Rio, R. Ray, P. Prandi, P.-Y. Le Traon, and J. Benveniste (2023), Ocean Circulation from Space, Surveys in Geophysics, 4, 1243-1286, doi: https://doi.org/10.1007/s10712-023-09778-9.
  37. Mourre, B., et al. (2023), Chapter 10 – Mediterranean observing and forecasting systems, in Oceanography of the Mediterranean Sea, edited by K. Schroeder and J. Chiggiato, pp. 335-386, Elsevier, doi: https://doi.org/10.1016/B978-0-12-823692-5.00001-7.
  38. Neukermans, G., L. T. Bach, A. Butterley, Q. Sun, H. Claustre, and G. R. Fournier (2023), Quantitative and mechanistic understanding of the open ocean carbonate pump – perspectives for remote sensing and autonomous in situ observation, Earth-Science Reviews, 239, 104359, doi: https://doi.org/10.1016/j.earscirev.2023.104359.
  39. Renosh, P. R., J. Zhang, R. Sauzède, and H. Claustre (2023). Vertically Resolved Global Ocean Light Models Using Machine Learning. Remote Sensing, doi: https://doi.org/10.3390/rs15245663.
  40. Ribeiro N, Herraiz-Borreguero L, Rintoul SR, Williams G, McMahon CR, Hindell MA, Guinet C (2023) Oceanic regime shift to a warmer continental shelf adjacent to the Shackleton Ice Shelf, East Antarctica. Journal of Geophysical Research: Oceans, doi: http://dx.doi.org/10.1029/2023JC019882.
  41. Sérazin, G., A. M. Tréguier, and C. de Boyer Montégut (2023), A seasonal climatology of the upper ocean pycnocline, Frontiers in Marine Science, 10, doi: https://doi.org/10.3389/fmars.2023.1120112.
  42. Stoer AC, Takeshita Y, Maurer TL, Begouen Demeaux C, Bittig HC, Boss E, Claustre H, Dall’Olmo G, Gordon C, Greenan BJW, Johnson KS, Organelli E, Sauzède R, Schmechtig CM and Fennel K (2023). A census of quality-controlled Biogeochemical-Argo float measurements. Front. Mar. Sci, doi: https://doi.org/10.3389/fmars.2023.1233289.
  43. Terrats, L., H. Claustre, N. Briggs, A. Poteau, B. Briat, L. Lacour, F. Ricour, A. Mangin, and G. Neukermans (2023), BioGeoChemical-Argo Floats Reveal Stark Latitudinal Gradient in the Southern Ocean Deep Carbon Flux Driven by Phytoplankton Community Composition, Glob. Biogeochem. Cycle, 37(11), e2022GB007624, doi: https://doi.org/10.1029/2022GB007624.
  44. Treguier, A. M., C. de Boyer Montégut, A. Bozec, E. P. Chassignet, B. Fox-Kemper, A. McC. Hogg, D. Iovino, A. E. Kiss, J. Le Sommer, Y. Li, P. Lin, C. Lique, H. Liu, G. Sérazin, D. Sidorenko, Q. Wang, X. Xu, and S. Yeager (2023), The mixed-layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies. Geosci. Model Dev., 16, 3849–3872, doi: https://doi.org/10.5194/gmd-16-3849-2023.
  45. Uitz, J., C. Roesler, E. Organelli, H. Claustre, C. Penkerc'h, S. Drapeau, E. Leymarie, A. Poteau, C. Schmechtig, C. Dimier, J. Ras, X. Xing, and S. Blain (2023). Characterization of Bio-Optical Anomalies in the Kerguelen Region, Southern Indian Ocean: A Study Based on Shipborne Sampling and BioGeoChemical-Argo Profiling Floats. Journal of Geophysical Research: Oceans, doi: https://doi.org/10.1029/2023JC019671.
  46. von Schuckmann, K., et al. (2023), Heat stored in the Earth system 1960–2020: where does the energy go?, Earth Syst. Sci. Data, 15(4), 1675-1709, doi: https://doi.org/10.5194/essd-15-1675-2023.
  47. Zilberman, N. V., et al. (2023), Observing the full ocean volume using Deep Argo floats, Frontiers in Marine Science, 10, doi: https://doi.org/10.3389/fmars.2023.1287867.
  48. Wong, A. P. S., J. Gilson, and C. Cabanes (2023), Argo salinity: bias and uncertainty evaluation, Earth Syst. Sci. Data, 15(1), 383-393, doi: https://doi.org/10.5194/essd-15-383-2023.