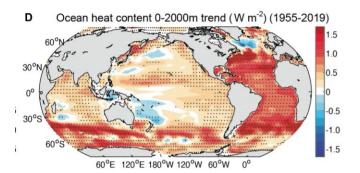
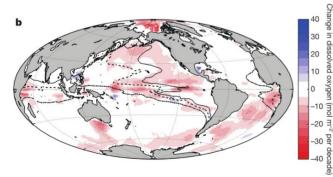


Recent trends and regional patterns of Ocean Dissolved Oxygen change

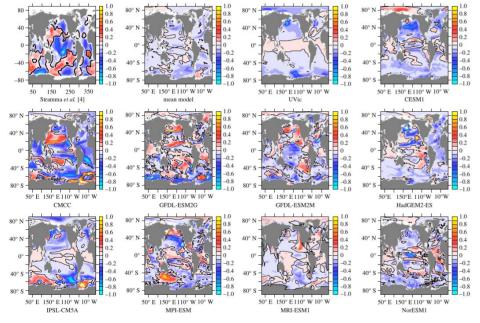

Nicolas Kolodziejczyk

Univ. Brest, LOPS Laboratory SNO Argo France Brest, France


with collaboration of E. Portela, V. Thierry and A. Prigent

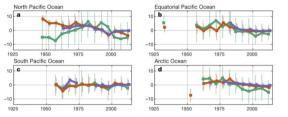
Argo 2030 Meeting, 26 September 2023, Brest, France

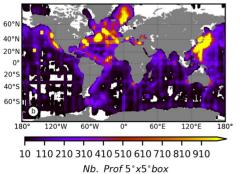
Ocean is warming and deoxygenating


(Cheng et al., J. Clim., 2017)

- Ocean Warming \rightarrow less O₂ solubility
- Stratification and circulation change \rightarrow less ventilation
- Loss of solubility quantified in the surface layer
- But deep O₂ change related to AOU (circulation and biology)

1955-2015 DO inventory change (Schmidtko et al., Nat. 2017)

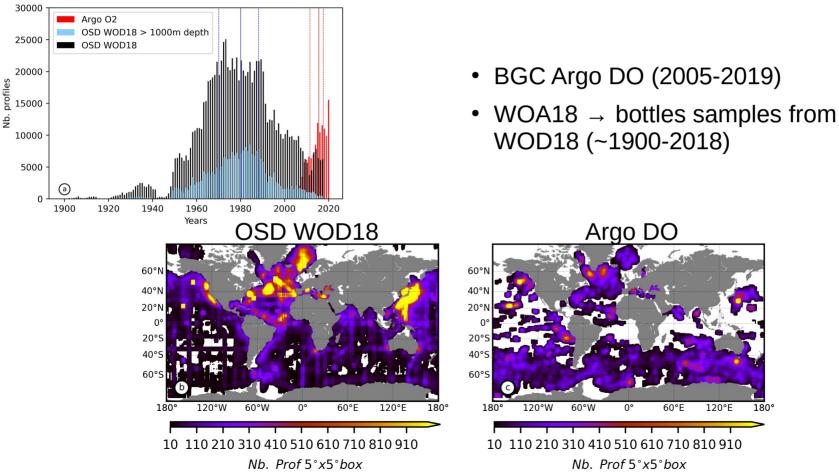

Modelling ocean DO


300 m depth DO in climate models (from Oschlies et al., *Phys. Trans.*, 2017)

- Climate model shows DO decline in future projection (Bopp et al., 2013; Oshlies et al., 2018)
- But, models have difficult to represents pattern and variability of O2 (Oschlies et al., 2017)
- Both physical and biological drivers needs to be better understood

1955-2015 DO change (Schmidtko et al., Nat., 2017)

Uncertainties

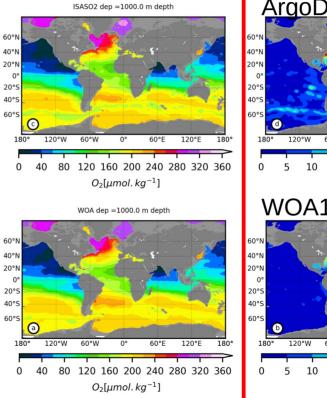

- Observation remain sparse in some region such as Southern Ocean
- Large uncertainties are remaining on the regional DO change.
- Hidden by large seasonal to interannual variability
- Quantitative and mechanistic understanding of deoxygenation driver is till lacking
- BGC Argo provides new consistent DO dataset

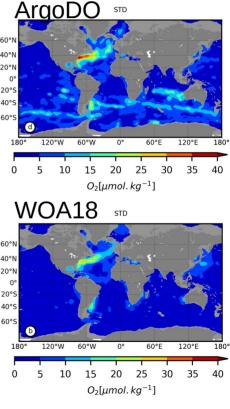
Number of historical bottle sample (1000 m depth) from WOD18

Questions

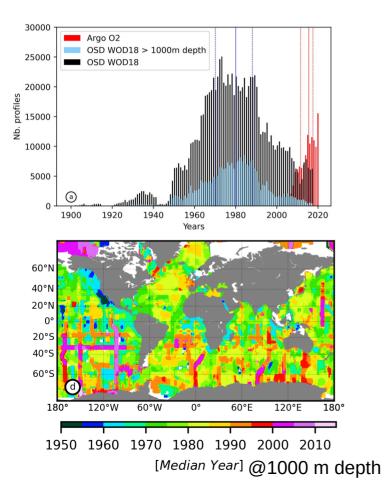
- Updated global picture of ocean DO change from Argo data ?
- More insight in regional pattern at interannual time scale to long term trends ?
- More insight in (physical) drivers of DO change ?

Argo DO DATA




Method

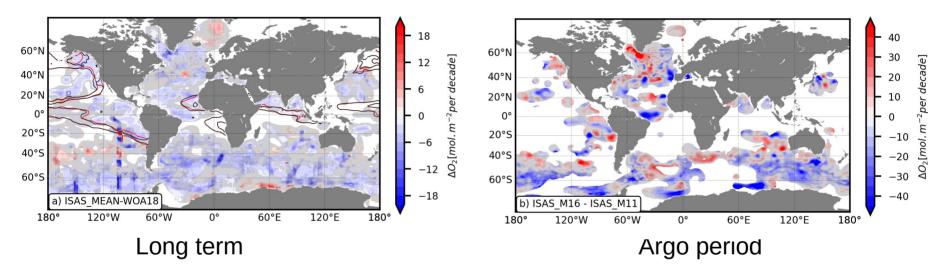
- ISAS Optimal Interpolation (Gaillard et al., 2016)
 - \rightarrow Global DO climatology
 - \rightarrow 0-2000 m
 - \rightarrow 2005-2019
- A priori statistics, covariance scale, weight


$$C(dx, dy, dt) = \sum_{i=1}^{2} \sigma_{Li}^{2} \exp\left(\frac{dx^{2}}{2L_{xi}^{2}} + \frac{dy^{2}}{2L_{yi}^{2}} - \frac{dt^{2}}{2L_{ti}^{2}}\right), \quad (4)$$

- 3 configurations:
 - First guess WOA18
 - ISASO2_MEAN: 2013, T= 5 years (2009-2018=10y)
 - ISASO2_M11 : 2011, T=2.5 years (2009-2013=5y)
 - ISASO2_M16 : 2016, T=2.5 years (2014-2018=5y)

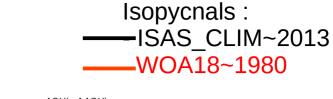
Time scales for WOA18

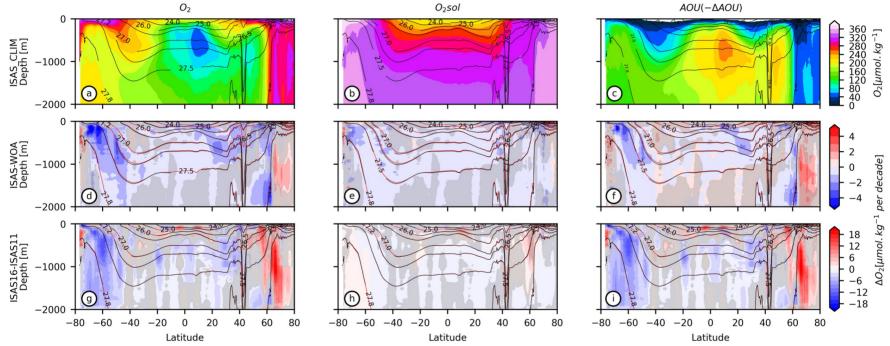
• Equivalent trend pattern :


$$DO_{eqtrend} = \frac{DO_{ISAS} - DO_{WOA}}{T_{scale}}$$

Error propagated using updated ISAS STD

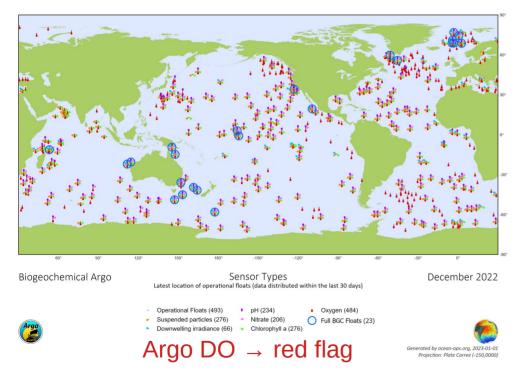
$$\rightarrow \mathsf{T}_{\mathsf{scale}}$$
?


- WOA18 \rightarrow OI WOD 18 (Barnes et al., 1964)
- OSD sample distribution centered around 1980 (@ 1000 m depth)
- Spatial variability median time of the OSD


Regional pattern of DO inventory

- Argo pre-Argo → -451±243 Tmol per decade since ~1980
 Argo → 1211±218 Tmol per decade over the Argo period
- Hot spots : Southern Ocean, North Atlantic, North Pacific, OMZ extension
- But oxygenation along Antarctic, poleward subtropcal gyre (mode waters?)
- Argo period : North Atltantic oxygenation (Feucher et al., 2022), poleward subtropcal gyre (mode waters) ?

Global section



- Long term trend : Doxygenation everywhere except in the Nordic Seas
- 2009-2018 : Oxygenation north 40°N

Conclusion

- Argo ISASO2 climatology allows to better estimate regional interannual to long-term change of the ocean Dissolved Oxygen.
- In the long term (Argo-PreArgo), oxygen has declined in key ventilation regions e.g. the Southern Ocean
- Over the Argo period (2005-2019), the AOU change explains the complex regional pattern (and more intense) linked to interannual to decadal mode of variability (e.g. North Atlantic,...).
- Still difficult to disentangle the natural vs anthropogenic variability of ocean DO

Discussion

- Remaining gap in the Argo DO data
- Argo data are adjusted using reference profiles and database
- but bias up to 3 µmol/kg due can be observed due to ad hoc correction and/or time response correction (Maurer et al., Front. Mar. Res., 2021)
- Still difficult to quantify the biology contribution (→ OneArgo BGC)

Thanks !

• Questions ?